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A two-dimensional numerical computation was made for unsteady laminar f low in a 
channel obstructed with a square rod placed perpendicular to the f low in the channel 
center plane. The computation was made for several cases of different rod sizes, different 
Reynolds numbers, and different patterns of inlet f low velocity profiles. The vortex shedding 
frequency and the drag coefficient of the rod are discussed first. Then the behavior of the 
vortex street formed downstream of the rod is discussed in particular. The present 
computation reveals that the vortex street shows a different pattern of motion from its 
counterpart formed behind a rod placed in a uniform flow. In several cases of obstructed 
channel flow, it is found that vortices that are shed from the upper half of the rod cross 
the channel center plane toward the bottom channel wall as they move downstream, and 
those that are shed from the lower half of the rod move toward the upper half of the f low 
space. Flow visualization was made for the f low in a channel obstructed by a square rod 
and confirmed the appearance of this interesting crisscross motion of the vortices. The 
blockage ratio is indicated to be a major factor governing the conditions for the appearance 
of the crisscross motion of the vortex. Misalignment of the rod position leading to asymmetry 
of f low is found to cause no serious suppression of the crisscross motion of the vortex. 

Keywords: unsteady channel f low; numerical analysis; obstruction with a square rod; 
vortex street; f low visualization; Strouhal number; crisscross motion of vortex 

I n t r o d u c t i o n  

Recently, periodically changing laminar unsteady flows have 
been attracting much attention. These types of unsteady flows 
appear in practical heat transfer devices in the transitional 
Reynolds number range. It is known that heat transfer can be 
enhanced by the incipience of flow instability (Nishihara, 
Suzuki, and Inoue 1988; Xi et al. 1989). However, the 
mechanism of heat transfer under such unsteady flow conditions 
has not been studied sufficiently. Periodically changing 
unsteady flow is particularly interesting because its periodical 
nature provides better conditions to facilitate the analysis of 
the heat transfer mechanism in an unsteady flow condition. In 
this article, attention is paid to a flow to be generated in a 
channel behind a square rod mounted in its center plane, and 
numerical computation is made for several cases of such an 
obstructed channel flow. A two-dimensional (2-D) treatment 
will be used in the present numerical analysis, taking a similar 
standpoint to that of Karniadakis, Mikic, and Patera (1988) 
and Davis and Moore (1982). This flow situation is related to 
another practical application of the vortex-shedding flow meter. 
The case in which the inlet flow has a parabolic velocity profile 
will be treated as the basic case in this study. Characteristics 
of the flow behind the rod are discussed, based on the results 
of a numerical computation. Special attention will be paid to 
a newly found crisscross motion of the vortex or the difference 
in the flow behavior between the basic case and the case when 
a rod is located in a uniform flow. Results of some flow 
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visualizations that confirm the numerical results will also be 
reported. Effects of the blockage ratio and displacement of the 
rod position from the channel center plane on the appearance 
of the crisscross motion of vortex will also be discussed. 

Procedure of numerical computation 

The finite-difference equivalents of the 2-D, time-dependent 
momentum equations were numerically solved with a computer. 
Constant properties were assumed for the working fluid. Under 
that assumption, the momentum equations are written as 
follows: 

a + a__ (pu~) + ~ (pvv) Tt (pV) ax 

- -  + 

ax -i;y,, (1) 

-~ (pv) + (our) + ~ (or ~) 

- + - -  + ( 2 )  

For finite differencing of the convection terms, a third-order 
upwind scheme (QUICK) (see Leonard 1979) was applied, 
while central finite differencing was used for the diffusion terms. 
Fully implicit forms of the finite-difference equations obtained 
were solved successively from one time to another step by step. 
The time increment between two successive time steps was set 
so that the Courant number for the smallest grid spacing 
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evaluated with the cross-sectional average velocity, Urn, was 
unity. An iterative procedure was adopted in the calculation at 
each time step to correct the solution for the pressure field so 
as to match the updated velocity field. The alternating direction 
implicit (ADI) method was combined in the iterative procedure. 
The pressure field was calculated by following the pressure 
correction method, i.e., SIMPLE (see Patankar and Spalding 
1972). 

Figure 1 schematically shows the computational domain. The 
streamwise length of the domain was set equal to 12H, where 
H is the width of the channel, and a square rod was located at 
a position 2H downstream from the upstream end of the 
computational domain. The streamwise and normal coordinates 
were designated by x and y, respectively, and the origin of the 
coordinate system was located at the center of the rod. The 
computation was made for six different sizes of rod; d = 0.5H, 
0.4H, 0.3H, 0.2H, 0.1H, and 0.05H. Except for some cases for 
which computations were made in preliminary and supplemental 
studies to be briefly discussed later, all other computational 
conditions treated in the present study are tabulated in Table 
1. At the upstream boundary, the inlet flow was assumed to be 
steady and hydrodynamically fully developed, i.e., characterized 
by a parabolic inlet velocity profile for cases A through L. The 
inlet flow for the other two cases, M and N, was assumed to 
have a uniform velocity profile. Another computation was made 
for a channel flow of reversed parabolic velocity profile and 
cross-sectional average velocity U~ (case O). This is an artificial 
case introduced just for comparison, but it may correspond to 
the case where the channel walls slide at a constant velocity 
(2Urn) under the pressure gradient to keep the cross-sectional 
average velocity Urn. One more computation was made for the 
flow behind a square rod located in a uniform flow in an 
infinitely large space (case P). 

The channel Reynolds number, Re, based on the hydraulic 
equivalent diameter of the channel (2H) and on the cross- 
sectional average velocity, Urn, was held constant at 1,000 for 
cases A, D, and G. On the other hand, in cases J, K, and L, 
the rod Reynolds number, Rea, based on the rod size, d, was 
kept constant at the same value of 150 as in the cases of A, M, 
O, and P. In preliminary study, additional computations were 
made for the case in which the rod was located in a uniform 
flow in an infinitely large space, in order to confirm the validity 
of the computation to be discussed below. In such computations, 
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Red was changed from 150 in several steps. In the cases of 
d/H = 0.05, 0.1, 0.2, and 0.3, computations were added for the 
cases of the channel Reynolds number lower than those 
tabulated in Table 1, but it was found that the flow in such 
cases remains to be steady laminar, as will be discussed later. 
Additional computations were also made for the cases when 
the rod was placed off the central plane. In such computations, 
the channel Reynolds number was kept constant at 1,000 and 
the blockage ratio d/H was set equal to 0.3. The results of these 
computations will also be discussed later. 

A total of 207 x 54 grid points were allocated nonuniformly 
in the computational domain, as shown in Figure 2 for case A; 
the finest arrangement of grid points was close to the edges of 
the rod, where the streamlines are expected to intersect at the 
largest angle (on average) with the direction of grid point 
alignment. 

A no-slip condition was applied as the velocity boundary 
condition along the solid wall. The flow field at the downstream 
end of the computational domain was treated so as to obey 
the boundary-layer approximation (Suzuki et al. 1981; Suzuki 
1990). The computation was started with an imaginary flow 

N o t a t i o n  

Cp Pressure coefficient (2(P - Po)/pU 2) 
CD Drag coefficient (2D/pU 2 d) 
C* Drag coefficient based on U* (2D/pU2d) 
d Size of a square rod, m 
D Drag force per unit length, N / m  
e Distance between the rod center and the channel 

center plane, m 
f Frequency, Hz 
H Distance between two parallel flat plates, m 
P Pressure, Pa 
P. One-sided power spectra of u, m2/s 
Re Channel Reynolds number (2pUmH/#) 
Red Rod Reynolds number (pU,~d/l~) 
Re* Rod Reynolds number based on U* (pU*d/p) 
Re~ Grid Reynolds number (pU= Axmin/#) 
S Nondimensional frequency (fd/Urn) 
St Strouhal number (to d/2nUm) 
St* Strouhal number based on U* (to d/2nUm) 

t 

U 
U* 
U 

V 
X 

Y 

Time, s 
Streamwise velocity, m/s  
Mean velocity in the clearance ( Um/(1 -- d/H)), m/s 
Fluctuating streamwise velocity, m/s  
Normal velocity, m/s  
Streamwise distance from the center of a rod, m 
Normal distance from the center of a rod, m 

Greek symbols 
Axmi, Minimum grid spacing, m 
p Viscosity of fluid, Pa.  s 
p Density of fluid, kg/m 3 
to Angular frequency of Karman vortex, rad/s  

Subscripts and superscripts 
m Cross-sectional mean 
0 Inlet 
' Intensity (root mean square value) 
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Table  1 Flow conditions, Strouhal number, and drag coefficient 

Case d/H Inlet condition Re Red Red St St* CD CO 

A 0.3 Fully developed 1,000 150 214 0.324 0.227 4.36 2.14 
B 0.3 Fully developed 700 105 150 0.322 0.225 4.15 2.03 
C 0.3 Fully developed 600 90 129 0.312 0.218 4.23 2.07 

1 /4  Fully developed 1,000 125 167 0.192 0.144 3.34 1.88 
D 0.2 Fully developed 1,000 100 125 0.222 0.178 3.49 2.21 
E 0.2 Fully developed 700 70 88 0.221 0.177 3.46 2.21 
F 0.2 Fully developed 600 60 75 0.215 0.172 3.38 2.16 

1 /6  Fully developed 1,000 83 100 0.175 0.146 3.13 2.18 
G 0.1 Fully developed 1,000 50 55.6 0.167 0.150 3.16 2.56 
H 0.05 Fully developed 2,000 50 52.6 0.166 0.158 3.06 2.76 
I 0.05 Fully developed 1,500 37.5 39.5 0.152 0.144 3.10 2.80 
J 0.5 Fully developed 600 150 300 0.519 0.260 8.17 2.04 
K 0.4 Fully developed 750 150 250 0.440 0.264 5.27 1.90 
L 0.2 Fully developed 1,500 150 187.5 0.199 0.159 3.69 2.36 
M 0.3 Uniform flow 1,000 150 214 0.321 0.225 3.25 1.59 

1 /4  Uniform flow 1,000 125 167 0.200 0.15 2.82 1.59 
# 0.2 1,000 1 O0 125 0.15 0.12 - -  - -  

1 /6  Uniform flow 1,000 83 100 0.161 0.134 2.32 1.61 
N 0.1 Uniform flow 1,000 50 55.6 0.145 0.131 2.20 1.78 
O 0.3 Moving walls 1,000 150 214 0.206 0.144 1.60 0.78 
P - -  Uniform free f low - -  150 - -  0.143 - -  1.54 - -  

*Values taken from Davis, Moore, and Purtell (1984). 
#Values taken from Ohwa, Sakao, and Matsuoka (1988). 
U* = Urn/(1 - d/H); Re; = Red( U* / Urn) = Red/(1 -- d/H); St* = St(Urn/U*) = St(1 - d/H); C; = C D ( U 2 / U  "2) = C o ( 1  - -  d/H) 2. 

field as the initial condition and proceeded step by step while 
the fluctuating manner of the flow was monitored. The results 
were examined for cycles long after the Karman vortex-shedding 
frequency had reached an asymptotic value. Several different 
flow fields were tested as the initial conditions, and the results 
obtained at such an asymptotic condition were confirmed to 
agree well with each other. The results to be discussed later 
were obtained with an initial condition such that the velocity 
profile at the inlet was assigned to all the streamwise cross 
sections except for the sections corresponding to the space 
between the square rod and the channel walls, where a 
modification of the velocity profile was made to satisfy overall 
mass continuity. 

Experimental apparatus 

An open water channel described in Yao, Nakatani, and Suzuki 
(1989) was used for flow visualization. Figure 3 illustrates the 
experimental apparatus. An overflow tank was used to keep 
the water head constant so that the flow was kept steady at 
the inlet of the test section. The channel Reynolds number, Re, 
was set equal to 1,000. The rod (size 0.3H) was positioned 
vertically in the center plane of the channel (width H = 50 mm). 

q • l  I I O v e r f l o w  Tank Test Sect ion 

Reservoir ~ulti Hole Plate 

F low  Mete r  

Figure 3 Experimental apparatus 
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Figure 4 Position of injection needles: (a) for f low visualization 
of Karman vortex street; (b) for f low visualization of f low two- 
dimensionality; and (c) for f low visualization of near wall region 
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However, the channel length was not long enough to locate the 
rod at a place where the flow would be fully developed. Thus, 
the results of the flow visualization are compared with the 
numerical results of cases A and M for different inlet velocity 
profiles. 

Series of photographs were taken from the top at intervals 
of about half a second by making use of a still camera with an 
automatic shutter, which was located in a position looking 
down the flow in the channel at a distance of about one meter 
from the flow area to be visualized. The period of incurred 
unsteady flow was observed to be about four seconds. Therefore, 
eight photographs could be taken in one cycle of flow 
fluctuation. Three different kinds of flow visualization were 
carried out. In two of them, the flow behind the rod was 
visualized, and in another, visualization was made for flow 
behavior near the channel wall. For the first two purposes, two 
thin injection needles having an inner diameter of 0.5 mm were 
placed about 20 mm apart from each other at a streamwise 
position just upstream of the rod, and two different colors of 
dye (red and blue-black) were, respectively, injected downstream 
from them. In order to visualize the behavior of Karman vortex, 
the two injection needles were positioned in the manner 
illustrated in Figure 4a. For the purpose of observing the 
two-dimensionality of the flow, they were positioned in another 
manner, illustrated in Figure 4b. Finally, for the purpose of 
visualizing the near wall flow behavior, one injection needle 
was placed near the wall in a manner illustrated in Figure 4c. 

Results and discussions 

To check the effect of grid spacing, computations were 
performed for case A with four different grid systems, tabulated 
in Table 2. Figure 5 shows the dependency of the observed 
Strouhal number on the grid spacing. The abscissa of the figure 
is the grid Reynolds number, Re B, based on the minimum grid 
spacing and on the cross-sectional average velocity. The 
horizontal line in the figure indicates the Strouhal number (0.33) 
obtained in the present flow visualization. The results obtained 
with grid systems p3 and p4 agree fairly well with each other. 
Finer grid spacing may give a more accurate solution; 
however, refinement of the accuracy of computation will be 
small after the number of grid points is increased beyond a 
certain level. At the same time, computational cost becomes 
larger. In the present computation, the p3 grid system or its- 
equivalents were adopted based on the trade-off between the 
accuracy and the cost of the computation. The Strouhal number 
numerically obtained with the grid system p3 is close to the 
Strouhal number obtained in the flow visualization. Inlet flow 
was not in a fully developed state in the flow visualization, as 
was assumed in the computation. However, as will be found 
later, the value of the Strouhal number evaluated with Um is 
rather insensitive to the difference of the shape of the 
approaching flow velocity profile. These facts provide evidence 
for the validity of the present computational procedure and the 

Table 2 System of grid points (case A) 

Case Grid points R% CPU time* 

pl 131 x 26 18.8 0.17 
p2 159 x 36 12.5 0.35 
p3 207 x 54 6.8 1 
p4 244 x 70 4.7 2.63 

* CPU time is described in a form normalized by the one required 
in the computation with the grid arrangement p3. 

Figure 5 

Unsteady f low in an obstructed channel: H. Suzuki et aL 

0.35 

0.3 

0.25 
1" 

p4 • • 
p3 

033 (Exp.) 

p2 
pl• 

! - r  

I0 20 Reg 

Strouhal number for each grid system 

02 

0] 

.~-.:~,~:;~.. • .::,:;6~: . . . . . . . . . . . .  ===================== 
.:;~;'~ ""::;:!i::i:;:,..;, 

°o s'o ,ooo 

o Present 

~ Okajima 

z~ Davis eta/ (Comp.) 

• Davis et at (Exp.) 
I 

,oo 280 
Reo 

Figure 6 Strouhal number in uniform f low 

(a) 

(b) - -  Blue Black - - -  Red 

Figure 7 Flow visualization of f low two-dimensionality, d /H  = 0.3: 
(a) photograph; and (b) sketch 

adopted grid spacing. In relation to the discussion below, it is 
observed that the Strouhal number is calculated to be smaller 
with coarser grid systems. This is found in the results of other 
investigators (Davis and Moore 1982). 

Another preliminary examination was made for the cases 
when a square rod was located in a uniform flow in order to 
confirm the validity of the present computational procedure. 
The rod Reynolds number, Rej, was changed in five steps, i.e., 
Rea = 70, 100, 150 (case P), 200, and 250. Figure 6 shows the 
Strouhal numbers obtained numerically for these cases in 
comparison with the experimental data by Okajima (1982) 
(shown as shaded region in the figure), Davis and Moore (1982), 
and also with the numerical results by Davis et al. (1984). 
The discrepancy observed between the two sets of experimental 
data was simply attributed to the difference in the main flow 
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turbulence level (Davis et al. 1984). However, there may be 
some other factors causing such discrepancy, like rod end-effect 
and sharpness of the rod edges. The present numerical results 
are close to the experimental data by Okajima (1982), 
particularly in the range of the rod Reynolds number (less than 
150), for which the present numerical computation of obstructed 
channel flow was made. This fact also suggests the validity of 
the present computational procedure. 

Figure 7a shows a black-and-white copy of the colored 
photograph obtained in the flow visualization carried out with 
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Instantaneous vorticity contours (case A through I) 

an arrangement of dye injection needles illustrated in Figure 
4b. Figure 7b is a sketch to supplement the photograph. From 
the photograph and its sketch, both lines are observed to be 
almost included in the same vertical sheet of fluid. Additionally, 
when both lines are viewed horizontally, it was observed that 
they keep almost the same spanwise positions as they flow 
downstream. Therefore, the flow presently studied is confirmed 
to be essentially 2-D, at least in the region covered by the 
photograph (1 < x/H < 3) at the Reynolds number 1,000. 

Figure 8 shows an example of the instantaneous contours of 
vorticity for each of the cases A through I, and Figure 9 
illustrates similar instantaneous vorticity contours for each of 
the cases J through P. Shaded and unshaded areas shown in 
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Figure 9 Instantaneous vorticity contours (case J through P) 
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these figures correspond, respectively, to the areas where the 
instantaneous vorticity takes positive and negative values. In 
all cases except for case F, periodical shedding of the Karman 
vortex is clearly observed. 

Figure 10 shows some examples of frequency spectra of the 
streamwise velocity fluctuation obtained from numerical results 
for case A at 6 of the 12 locations identified in Figure 1. They 
indicate that the calculated velocity fluctuation is highly 
periodic and is composed of harmonics. Thus, the calculated 
unsteady flow is found not to be irregular. Therefore, it is 
concluded to be different from turbulent flow, which is 
characterized by irregularity in time and space. The present 
type of unsteady flow may be called laminar unsteady flow. 

The Strouhal number and drag coefficient obtained for each 
case are listed in Table 1. The Strouhal number, St, and the 
drag coefficient were defined with the cross-sectional mean 
velocity, Urn, in the present study. In order to take into account 
the effect of the space between the rod and the channel wall, 
the Strouhal number, St*, and drag coefficient, C*, defined with 
the mean velocity of the flow through the clearance between 
the rod and the wall, U*, are also listed in Table 1. In the table, 
some numerical results reported by Davis, Moore, and Purtell 
(1984) and by Ohwa, Sakao, and Matsuoka (1988) for similar 
flow situations were included for comparison. As seen in the 
table, the Strouhal number does not take the same value along 
the studied cases, due to the difference in the rod Reynolds 
number and in the blockage ratio d/H. In contrast to those 
effects, the effect of approaching flow velocity profile is minor. 
The results of Davis, Moore, and Purtell (1984) are observed 
to be a little lower than the present results. The results of Ohwa, 
Sakao, and Matsuoka (1988) are also found to be noticeably 
lower than the present results. One of the reasons for this 
difference, judged from Figure 5, is that finer grid spacing was 
used in the present study. Figure 11 presents the calculated 
Strouhal numbers, St and St*, together with some other data 
(Davis, Moore, and Purtell 1984; Ohwa, Sakao, and Matsuoka 
1988; Blot et al. 1989). The present results, if plotted in the 
form of St*, lie rather close to the data of Blot et al. (1989) for 
the turbulent flow regime. The drag coefficient also does not 
take the same value among the cases of different blockage ratio, 
even if Re d is kept constant; it increases with an increase of 
d/H, as seen from the comparison of the results among cases 
A, J, K, and L. The values of C* become closer to the values 
for the case in which the rod is located in a uniform flow in 
an infinitely large space, and they are also found to vary less 
conspicuously with the blockage ratio. 
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Figure 12 Flow visualization of near wall region, d / H = 0 . 3 :  
(a) photograph; and (b)  instantaneous streak lines for case A 

In many cases, as illustrated in Figures 8 and 9, it is observed 
that the near wall region is noticeably affected by the Karman 
vortex and that the near wall flow becomes also unsteady. To 
confirm this, another type of flow visualization was made with 
a single dye-injection needle arranged in the manner shown in 
Figure 4c. The obtained photograph is shown in Figure 12a. 
Figure 12b shows the streak lines calculated at an instant for 
case A. Similarity of behavior is obvious between the visualized 
and calculated streak lines, and the unsteady behavior of the 
near-wall flow was actually confirmed. As for the disturbance 
generated in the near wall region, a noticeable difference is 
observed between cases A and G (d/H = 0.3 and d/H = 0.1, 
respectively). In the latter case, conspicuous time-dependent 
fluid motion is only noticeable in the core region, and the flow 
in the region close to the channel wall behaves in a manner 
rather close to the one observed for steady flow regime. In other 
words, disturbance created in the near wall region by the 
insertion of the rod is much less significant when d/H is as 
small as 0.1. On the other hand, the wall region is noticeably 
disturbed by the periodically appearing Karman vortices in the 
case of d/H = 0.3. This difference results in a level of periodic 
change of instantaneous wall heat transfer characteristics 
(Suzuki and Suzuki, forthcoming). 

In Figures 8 and 9, it is also noticeable in case P that the 
vortex having positive vorticity remains in the lower half of the 
domain and that the one having a negative sign remains in the 
upper half of the domain; namely, each vortex remains on the 
same side in which it was originally shed. An important point 
to be noted is that there is a clear difference in the motion of 
the shed vortices between case P and case A. In the latter case, 
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a vortex does not remain on the same side from which it was 
originally shed. The vortex shed from the upper half of the rod 
gradually moves toward the bottom wall of the channel as it 
flows downstream, and the vortex shed from the lower half 
moves toward the top wall. This clearly differs from the vortex 
observable in case P, when the rod is located in a uniform 
unconfined flow. The same thing is observed in all of the other 
cases B through M except for cases C, F, H, and I. In case C, 
no crisscross motion is observed in the region shown in Figure 
8 but is confirmed to occur at positions of x/H > 3.6. In case 
F, flow is unsteady. However, only the wavy motion of the 
separation layer is observed, and the Karman vortex does not 
appear. This case will be discussed again later. 

In order to confirm this numerical result, flow visualization 
was performed in a flow similar to the presently calculated one 
using the open channel described above. In this flow 
visualization, the two injection needles of dye were positioned 
in the manner illustrated in Figure 4a. Figure 13a shows one 
of the photographs taken in such a flow visualization for the 
case in which d/H = 0.3. To supplement the black-and-white 
copy of the colored photograph, a sketch of the photograph is 
added in Figure 13b. It is clearly observed that the vortex shed 
from the lower side of the rod moves toward the top wall of 
the channel and that the one from the upper side of the rod 
crosses the center plane towards the bottom wall of the channel. 
The numerical results for case A shown in Figure 8 are not the 
streak lines observed in flow visualization but rather vorticity 
contours. Comparison of the results of cases A and M reveals 
that the velocity profile of the flow approaching the rod does 
not noticeably alter the pattern of the vortex motion. Therefore, 
for direct comparison, the streak lines obtained from the 
numerical results for case A are shown in Figure 13c. For 
simplicity in this figure, only the streak lines passing below the 
rod are shown. They are found to behave similarly to those 
actually observed in the flow visualization. Therefore, the 
peculiar crisscross motion of Karman vortices found in the 
present numerical computation has been confirmed to actually 
exist. This agreement also confirms the validity of the 2-D 
treatment of the flow and of the adopted numerical procedure, 
at least, in the region of x/H < 3.5 at the Reynolds number of 
1,000. 

In order to present an idea about the condition necessary 
for the appearance of the crisscross motion of the Karman 
vortex, numerical computation was supplementarily added for 
several other cases just to see when flow becomes unsteady and 
if Karman vortices show crisscross motion. These computations 
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Figure 13 Results of flow visualization, d / H  = 0.3: (a) photo- 
graph; (b) sketch; and (c) instantaneous streak lines for case A 
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Figure 14 Map for occurrence of crisscross motion of vortex: (a) 
steady flow; (b) unsteady flow--Karman vortex shows crisscross 
motion; (c) unsteady flow--Karman vortex shows normal motion; 
and (d) unsteady, but Karman vortex is not shed 

were made assuming the inlet velocity profile to be parabolic. 
Figure 14 presents a map of the obtained results. In this map, 
the results of the cases tabulated in Table 1 were also included. 

It is found in this figure that whenever the Karman vortex 
appears at all the blockage ratios of d/H >1 0.1, the crisscross 
motion of vortex is generated. However, at the smallest blockage 
ratio ofd/H = 0.05, the Karman vortex shows normal behavior. 
Therefore, the blockage ratio is a major factor governing 
whether the Karman vortex shows crisscross motion or not. 
At a blockage ratio larger than 0.1, the crisscross motion of 
the vortex appears at any Reynolds number at which flow 
instability occurs. Thus, the presence of the wall near the vortex 
is a very important condition for the appearance of the crisscross 
motion of the vortex. However, in case N (where the blockage 
ratio is the same as that for case C, namely, d/H = 0.1), it is 
found that the vortices do not show crisscross motion. This 
suggests that the effect of the wall on whether the crisscross 
motion of the vortices occurs or not is not simple. It should be 
studied in detail, with attention paid to the time variation of 
instantaneous flow structure. This will be done in Suzuki et al. 
(forthcoming). 

It is also observed in Figure 14 that a critical Reynolds 
number for flow instability depends on the blockage ratio. The 
critical value of the rod Reynolds number increases with an 
increase in the blockage ratio, but the critical value of the 
channel Reynolds number is lowered with an increase in the 
blockage ratio. 

One more examination was made to clarify how the 
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Figure 15 Instantaneous vort ici ty contours; cases when the rod 
( d / H  = 0.3) is mounted off the channel center plane 

misalignment of a rod leading to the asymmetry of flow affects 
the appearance of the crisscross motion of the vortex. For this 
purpose, another computation was added to the other three 
cases of d /H  = 0.3 and e / H  = 0.05, 0.175, and 0.3, where e is 
the distance between the rod center and the channel center 
plane. Instantaneous vorticity contours obtained for the three 
cases are shown as examples in Figure 15. In the case of 
e /H  = 0.3, in which the space between the rod and the channel 
wall is as small as 0.05H, the vortices are not shed periodically. 
In the case of e /H  = 0.175, the vortices that are shed from the 
lower side of the rod disappear quickly but still show crisscross 
motion. Therefore, asymmetry of the flow geometry does not 
sensitively affect the appearance or nonappearance of the 
crisscross motion of the vortex. 

Concluding remarks 

Numerical computations were made for channel flows that were 
hydrodynamically fully developed at the inlet but were 
obstructed by a square rod placed perpendicular to the flow 
direction in the channel center plane. In two exceptional 
computations, uniform flow was assumed to exist at the inlet. 
Several other computations were added for cases in which the 
rod was placed in a uniform unconfined flow, channel walls 
slid at a constant speed, and the rod was placed off its center 
plane in a channel. Computation was made for various sizes 
of rod and at different channel and rod Reynolds numbers. The 
validity of the present 2-D computation was confirmed by 
comparing the numerical results for the obstructed channel flow 
and the wake behind a square rod placed in a uniform 
unconfined flow with corresponding experimental results. It 
was demonstrated that vortices shed from the rod can behave 
differently in the two cases of confined flow and unconfined 
flow. Numerical results for channel flows show that vortices 
cross from one half of the flow space to another in some cases 
of obstructed channel flow. This was confirmed by the flow 
visualization. The blockage ratio or the presence of channel 
walls is concluded to be the major factor determining whether 
the crisscross motion of the vortex is generated or not. 

Unsteady f low in an obstructed channel: H. Suzuki et al. 

Asymmetry of the flow caused by the misposition of the rod is 
found not to seriously affect the condition of whether the vortex 
exhibits crisscross motion or not. 
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